If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+4x-2308=0
a = 3; b = 4; c = -2308;
Δ = b2-4ac
Δ = 42-4·3·(-2308)
Δ = 27712
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{27712}=\sqrt{64*433}=\sqrt{64}*\sqrt{433}=8\sqrt{433}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-8\sqrt{433}}{2*3}=\frac{-4-8\sqrt{433}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+8\sqrt{433}}{2*3}=\frac{-4+8\sqrt{433}}{6} $
| 48=9/5c | | x=3x+19 | | 10x-15/2x-3=0 | | -4(x+2)=x+22 | | x-22x/100x=10 | | x-22x/100=10 | | 7x+16=-3(x-2) | | 2x+-8=1 | | (3/5)x+5.2=x | | 4x+5+3=16+2x-6=x | | X-3+5x=-x+11 | | 8+-17=5x=x+11 | | 12x-x=24 | | 4=1.09^t | | m-14=100 | | 14x^2-234x+634=0 | | 35+8l=-15 | | 20+9x=-4 | | -25+3k=50 | | -1x-x0.07=-12.35 | | 12.35=(x)0.07+x | | 6p=2=4+5p | | 2k/4=-2 | | 18y+6=12y= | | 0.15+0.6/x=0.75 | | 6^(2n)=12 | | 34+2y=68 | | x+x*0.18=70000 | | 69x*5-16=231*231x+12x | | 3.14159265359+x=4 | | -6/5x=-3/7-3/8+3x | | -3/x=2/5+3/2x-7 |